
VHDL Modeling of Booth Radix-4 Floating Point Multiplier for VLSI
Designer’s Library

WAI-LEONG PANG, KAH-YOONG CHAN, SEW-KIN WONG, CHOON-SIANG TAN

Faculty of Engineering
Multimedia University

Persiaran Multimedia, Cyberjaya
MALAYSIA

wlpang@mmu.edu.my, kychan@mmu.edu.my, skwong@mmu.edu.my

Abstract: - Floating point arithmetic computation has been widely used today in graphics, digital signal
processing, image processing and other applications. Multiplication is the most complex calculation that used in
most digital electronic circuit. The multiplier may have large chip area density, high complexity, and is a time
consuming computation because the output data size is twice larger than input data size. Complex floating point
multiplication required more time to process data and is highly recommended to improve the computation
speed. The performance in terms of computation and processing speed is one of the major factors in today’s
Very/Ultra Large Scale Integration (VLSI/ULSI) system design. The objective of this research is to design a
32-bit floating point multiplier for Very high speed integrated circuit Hardware Description Language (VHDL)
designer’s library that consists of mantissas multiplier, normalizer, exponent adder, and signer for VHDL
designer’s library that lack of floating point multiplier module. Booth radix-4 algorithm is used in the
multiplier, mainly due to the simplicity of this algorithm to be modeled using VHDL and at the same time it
provides good performance. The 32-bit floating point multiplier is tested on Arria II GX chip to determine their
performance in terms of slack, maximum frequency and minimum clock period by using TimeQuest Timing
Analyzer. Booth radix-4 multiplier in Arria II GX (EP2AGX45CU17I3) produces a maximum frequency of
206.14 MHz and minimum allowed clock period of 5 ns. Benchmarking has been carried out between the
Booth radix-4 and Wallace Tree multipliers, since Wallace Tree multiplier can provide better performance to
the VLSI system design. The resource consumption of Booth radix-4 multiplier is 88.8% less than the Wallace
Tree multiplier and the performance of Booth radix-4 multiplier is almost equal to the Wallace Tree multiplier.

Key-Words: - VHDL, Booth Radix-4, Floating Point Multiplier

1 Introduction
Floating point computation has been widely used
today in graphics, Digital Signal Processing (DSP),
image processing and other applications. Floating
point multiplication is a critical module in many
applications especially for Graphic Processing Unit
(GPU), image recognition, and digital signal
processing applications such as wired and wireless
communications involving a large dynamic range.
One of the most demanding example applications
that use floating point multiplier is Three-
Dimensional (3D) GPU for gaming. Real time 3D
graphics display is relied on the GPU's floating
point unit to perform floating point calculations. The
3D object is rendered by many numbers of polygons
to form. The floating point multiplier is used to
calculate the changes of polygons, which involved
some mathematical approach such as matrix and
vector calculation. Floating point numbers gives
high level of precision, produces much better detail

of the 3D model. Another example that uses floating
point multiplier is the navigation system in radar for
identification, tracking and detection. The radar
system may be scanned within a range between
starting point to destination point for target
acquisition. It requires wide dynamic ranges that use
multiply or divide operation or matrix inversions to
calculate polar coordinates to detect the exact target
location precisely. Since the subset of the range
must be determined in real time during operation,
this is impossible to design this navigation system
using fixed point DSP due to its limited range.
Fortunately, floating point DSP is the perfect choice
in designing this navigation system because it
provides wide dynamic range and high precision [1].

Such complex multiplication required more time
to process the data. Therefore, the high speed
multiplication unit for floating point numbers is
highly recommended to speed up such complex
floating point multiplication. Some research

WSEAS TRANSACTIONS on SYSTEMS
Wai-Leong Pang, Kah-Yoong Chan,
Sew-Kin Wong, Choon-Siang Tan

E-ISSN: 2224-2678 678 Issue 12, Volume 12, December 2013

engineers have already started their research on
designing a high speed floating point multiplier
recently [2-6]. The performance in terms of
processing speed of floating point data calculation is
the main performance metric in today’s VLSI or
ULSI system design. The multiplier consumes large
chip area density, high complexity, and time
consuming process because the output data size is
twice larger than input data size. Designing a high
speed floating point multiplier in Field
Programmable Grid Array (FPGA) [7] is still
remains a major challenge. This inspired the idea to
model a high speed floating point multiplier for
VHDL designer's library. VHDL is one of the
suitable languages to be used for complex system
modelling [8-10].

There are many types of design models have
been introduced to perform only for multiplication,
and every multiplier design models have different
algorithms which will give the same operation but
different performance in terms of calculating speed
and also resource consumption. Different type of
multiplier algorithms is studied in this research. The
suitable multiplication algorithm that is suitable for
high speed 24-bit multiplication is identified. A new
32-bit single precision high speed floating point
multiplier will be modelled in VHDL using the
latest Engineering Design Automation (EDA)
software, Altera Quartus II.

The main objective of this research is to model a
32-bit single precision floating point multiplier
using VHDL. Since the floating point multiplier is
not available in the VHDL designer’s library, a new
multiplication algorithm will also be created as a
new module in the library. The Booth multiplication
algorithm is proposed as a model for designing 24-
bit multiplier. Other components including signer,
exponent adder, and normalizer will also be
modelled in VHDL to build a complete 32-bit
floating point multiplier. Extensive simulation will
be carried out on the multiplier modelled for
functional verification. A high speed floating point
multiplier is sampled by selecting the valid input
data to produce the valid output results.
Assumptions have been made to ignore the invalid
data like overflow or underflow results produced by
multiplying with infinite value or multiplying by
zero respectively in this performance verification.

The timing performance, maximum operation
frequency and resource consumption of 32-bit
floating point multiplier are determined. Three
Altera FPGA Arria II GX chip is used to evaluate
the performance of the 32-bit floating point
multiplier. The performance and resource usage
comparison between newly proposed Booth

multiplier and Wallace Tree multiplier are carried
out.

2 Floating Point Multiplication
Algorithms
The reason to have real numbers or fractional
numbers is to obtain the result with better accuracy
and precision. The binary representation is used to
convert the real number into binary form that mostly
supported by the machine. Such complex
calculation required a huge amount of data and
complex hardware to process desired output.

In the early stage, fixed point representation was
the easiest method to convert the real number to
binary because fixed-point adheres to the same basic
arithmetic principles as integers. However, fixed
point representation has limited range of values and
once exceeding the range limit can cause data
overflow. The floating point representation has
better precision and support a much wider range of
values compared to the fixed point representation.
The size of the floating point representation that can
be stored is either 32-bit (single-precision) or 64-bit
(double-precision) defined by IEEE 754 Standard
[11]. The IEEE Standard 754 single precision
floating point format is widely implemented in
digital systems uses 32 bits and 64 bits floating
point number representation. In general, numbers
are represented approximately to a fixed number of
significant digits and scaled using an exponent. The
base for the scaling is 2 for binary. For 32-bit
floating point number representation, a floating
point number in scientific notation as well as the
IEEE 754 format are presented in Fig.1.

-1Sign × 1.Mantissa × 2Exponent-127 (1)

Sign
(1 bit)

Biased
Exponent
(8 bits)

Mantissa
(23-bits)

Fig.1: IEEE 754 single precision (32-bit) floating
point format

A decimal number needs to convert to binary
number first follow by converting it to IEEE 754
single precision (32-bit) floating point format. The
decimal point of the binary fractional number is
moved to either left or right, so that only a single
binary digit "1" is placed to the left of the binary
decimal point. The exponent is used to record the
adjustment of the decimal point. Next, the bias
value, which is 127 is added to the exponent and
then convert it into 8-bit binary. The "1." is omitted

WSEAS TRANSACTIONS on SYSTEMS
Wai-Leong Pang, Kah-Yoong Chan,
Sew-Kin Wong, Choon-Siang Tan

E-ISSN: 2224-2678 679 Issue 12, Volume 12, December 2013

from the mantissa. Once sign, biased exponent and
mantissa are determined, 32-bit floating point
representation is finally formed. The following
example shows the conversion from decimal
number to IEEE 754 32-bit floating point
representation (Convert 12.062510 to 32-bit
floating point).

1210 = 0000 11002
0.0625 x 2 = 0.125
0.125 x 2 = 0.25
0.25 x 2 = 0.5

0.5 x 2 = 1
12.062510 = 000001100.00012 = 1.1000001 x 2 3

�

���
3+127=13010 �

�=100000102

1.1000001
0 10000010 10000010000000000000000

Multiplication is the mathematical operation of

scaling one number by another. The common
method to calculate the multiplication is using
manual multiplication (Fig.2), which is multiply the
multiplicand by each digit of the multiplier and then
adds up all the properly shifted partial products.
This method also applies in binary multiplication, a
simple shift and add algorithm in base 2.

Fig.2: Manual multiplication method

This manual multiplication method can also be
applied in circuit design by each part of
multiplicand and multiplier is connected to AND
gate to get partial products, and then adds up each
partial product with adders. However, this design is
impractical because almost all partial products are
used and occupied more area density in a chip and
also cause slow throughput. There are many
multiplication methods that can reduce the number
of partial products and speed up the process for
better throughput in order to design the high speed
multiplier. Wallace tree and Booth multiplier are
widely used for implementing fast and efficient
multiplier.

2.1 Wallace Tree Multiplier
Australian computer scientist Chris Wallace
introduced the multiplication algorithm to
implement the efficient circuit that multiplies two
numbers, named Wallace tree multiplier in 1964
[12]. The partial products are arranged to form the
Wallace Tree shown in Fig.3, and then compress the
partial products using either a full adder (3:2
compressor) or half adder (2:2 compressor),
depending on how many partial products are present
in the same column.

Fig.2: Partial products arrangement in the form of
Wallace tree structure

If there are three partial products within the same
column, full adder is used to compress them and the
output will be a sum output in the same column and
a carry output that will be carried forward to the
next higher column. If there are two partial products
of the same column, half adder is used and the
outputs are a sum in the same column and the carry
output that will be carried forward to the next higher
column. If there is just one partial product left, it
will take as part of the result. The processes are
repeated until only remain one partial product left in
all columns to complete the Wallace Tree
multiplication. The following example had shown
the multiplication of 15×13.

1510 = 11112
1310 = 11012

WSEAS TRANSACTIONS on SYSTEMS
Wai-Leong Pang, Kah-Yoong Chan,
Sew-Kin Wong, Choon-Siang Tan

E-ISSN: 2224-2678 680 Issue 12, Volume 12, December 2013

First stage:

Second stage:

Final stage:

Fig.4 described the structure of Wallace tree

multiplier that works similar to the example
mentioned in previous part. Wallace tree multiplier
speeds up the calculation by reducing the number of
partial products. However, the disadvantage of the
Wallace Tree multiplication is the digital circuit
become more complicated as the number of bits
extends. The consequence is the hardware wiring
become more difficult to route, and large number of
adders contribute longer delay to generate the final
results thus slow down the processing speed. And
that is the reason why Wallace Tree multiplication is
not suitable to implement the high speed 24-bit
multiplier.

Fig.4: Partial products reduction in Wallace tree
multiplier

2.2 Booth Radix-4 Multiplier
The Booth multiplication algorithm was developed
by a British electrical engineer, physicist and
computer scientist Andrew Booth in 1950 [13].
Booth formalized this observation and applied it to
binary multiplication, where he started the first
version known as radix-2. At the beginning, the first

pair is created by appending least significant bit or
Least Significant Bit (LSB) of the multiplier and a
new bit ‘0’ is added next to its right before
examining each pair of bits. Then, Booth devises a
simple rule for each step to complete multiplication:
• Add the multiplicand if the pair is 01,
• Subtract the multiplicand if the pair is 10,
• Do nothing if the pair is 00 or 11.

Once done, both partial product and multiplier
are shifted one place to the right to allow the next
pair of bits to be examined. Table 1 shows the radix-
2 algorithm scheme, where A is multiplier, B is
multiplicand and i represents bit position (e.g. i=0
indicates LSB). This process is repeated many times
depending on the number of bits in the multiplier to
complete the multiplication.

Table 1: Booth Algorithm Scheme (Radix-2)

A(i) A(i-1) B
0 0 +0
0 1 +B
1 0 -B
1 1 +0

For instance, mantissas multiplication required

24 bits for both inputs, and thus the examine pairs
process in booth algorithm is repeated 24 times to
complete mantissas multiplication. However, the
radix-2 version takes too long to complete 24-bit
mantissas multiplication process. Fortunately, the
performance of Booth multiplier is improved in the
enhanced version Booth radix-4. Instead of
examining two least significant bits per step in
radix-2, Booth radix-4 examines three least
significant bits at a time in one step and performs
actions before double right shifting. Initially, the last
two bits of the multiplier are appended and a new bit
‘0’ is added on the right of the LSB for Booth radix-
4. The following actions are carried out to complete
the computation.
• If 001 or 010, add the multiplicand only once.
• If 011, add the multiplicand twice.
• If 100, subtract the multiplicand twice.
• If 101 or 110, subtract the multiplicand only

once.
• If 000 or 111, do nothing.

Both partial product and multiplier are then
shifted two places to the right, allow the next three
bits to be examined. This process is repeated
depending on the number of bits in the multiplier to
complete the Booth radix-4 multiplication. Table 2
shows the Booth radix-4 algorithm scheme. Notice
that Booth radix-4 is able to reduce the number of

WSEAS TRANSACTIONS on SYSTEMS
Wai-Leong Pang, Kah-Yoong Chan,
Sew-Kin Wong, Choon-Siang Tan

E-ISSN: 2224-2678 681 Issue 12, Volume 12, December 2013

steps by half compared to radix-2 and higher
processing speed can be achieved.

Table 2: Booth radix-4 Algorithm Scheme

A(i+1) A(i) A(i-1) Action
0 0 0 Do nothing
0 0 1 A+B
0 1 0 A+B
0 1 1 A+2B
1 0 0 A-2B
1 0 1 A-B
1 1 0 A-B
1 1 1 Do nothing

Table 3 shows the computation that using Booth

radix-4 multiplication.
1111 (15) x 1101 (13) = 11000011 (195)
Assuming 15 is multiplier, and 13 is multiplicand.
With Booth radix-4 multiplication, the number of
partial products is greatly reduced, makes this
hardware simple to implement and performs faster
in data processing compared to Wallace Tree. In this
research, a 24-bit Booth radix-4 multiplier is
proposed in order to achieve high speed mantissas
multiplication for high speed floating point
multiplier. Booth radix-4 multiplier takes about 12
clock cycles to complete the 24-bit mantissas
multiplication.

Table 3: Multiplication of 15 x 13 = 195 using
Booth radix-4 algorithm

3 32-bit Booth Radix-4 Multiplier
The single-precision (32-bit) floating-point
multiplier performs multiplication of two inputs

which are floating-point numbers. At the beginning,
both inputs must be converted from decimal number
into floating point representation based from IEEE
754 standard before doing the multiplication. Once
the floating point multiplication is complete, the
output which is in IEEE 754 floating point
representation will convert back to decimal number.
A multiplication of two floating-point numbers is
done in the following 5 steps:

Step 1: Multiplication of mantissas
Step 2: Normalization
Step 3: Addition of the exponents
Step 4: Calculation of the sign
Step 5: Composition of all results

Fig.5: 32-bit floating point multiplier data flow

Fig.5 described the 32-bit floating point
multiplier data process flow. Each input is split into
three modules (sign, exponent, and mantissa) so that
can be easily to route into corresponding
components. Signs from input A and B are
connected directly to XOR gate to generate the final
sign result, either ‘0’ indicates positive sign or ‘1’
indicates the negative sign. Meanwhile, exponents
and mantissas from input A and B are connected to
exponent adder and multiplier respectively. The 48-
bit output from multiplier must pass through to the
normalizer to perform rounding to nearest 23-bit of
mantissa. In exponent adder, both exponents from A
and B are added before subtract to bias value which
is 127. The carry signal from normalizer is also
connected to exponent adder to adjust the exponent
value, which will be the final 8-bit exponent result.
All the output from signer (1-bit), exponent adder
(8-bit), and normalizer (23-bit) are then combined to
form 32-bit floating point multiplication product as
the final results.

The last 23 bits of mantissa in 32-bit floating-
point number is given by two operands for

WSEAS TRANSACTIONS on SYSTEMS
Wai-Leong Pang, Kah-Yoong Chan,
Sew-Kin Wong, Choon-Siang Tan

E-ISSN: 2224-2678 682 Issue 12, Volume 12, December 2013

multiplication. The explicit ‘1’ added as the leading
bit of both mantissas to fit into 24-bit multiplier
unit. The 24-bit data multiply with another 24-bit
data result twice the size of the operands which is a
48-bit data. Booth radix-4 multiplier is used as 24-
bit mantissas multiplier. Later, only 23 bits are to be
extracted in order to follow IEEE 754 standard
rules. This can be done by normalization.

The extraction of 23-bit out of 48-bit output after
multiplication, which is the final result for mantissa
have come with 2 conditions. It may also involve
some adjustment of the resultant exponent,
depending on Most Significant Bit (MSB) of the 48-
bit multiply product. If the MSB is ‘1’, bit-25 to bit-
47 will be selected as final 23-bit mantissa with
rounding to nearest by adding bit-24, and add ‘1’ to
exponent. If MSB is ‘0’, then bit-24 to bit-46 will be
selected with rounding to nearest by adding bit-23
without adding carry to exponent.

The 8-bit exponent values from two operands are
added to generate a sum of 9-bit result. The
incoming values are biased, a constant value of 127
must be subtracted from the result. In addition, the
carry signal from the normalizer is added to this
exponent for adjustment. Only 8-bit exponent values
forward to the final output, which will be the 8-bit
exponent in IEEE 754 32-bit floating point. The
formula for the sum of exponents is as follow.

Sum of Exponent = Exponent A + Exponent B - 127
 + Carry from Normalizer (2)

For special case reason, the MSB (bit-9) denotes
that an exponent is either overflow or underflow has
occurred. The MSB of the exponent is ‘1’ means the
exponent value is overflowed (infinite value), and
‘0’ means this is under flowed (nearly zero value).

The left most significant bit in 32-bit floating-
point format stores the sign of the number after
multiplication, where ‘0’ indicate positive sign (+)
or ‘1’ indicate negative sign (-). The result will
generate a positive signed number when either
positive signed numbers or both negative signed
numbers are multiplied. If one input is a positive
signed number, and other is a negative signed
number, the result will generate a negative signed
number after multiplies to two different signed input
numbers. A simple method to determine the sign is
using an exclusive-or gate (XOR gate). The XOR
gate gives output logic ‘0’ if both inputs are the
same and logic ‘1’ if both inputs are different.

4 Simulation Analyses
Altera Quartus II is the best EDA software to design
digital logic circuit behaviour by schematic, or
coding (VHDL or Verilog) on FPGA devices.
VHDL is most commonly used to describe a logic
circuit by writing text model. The text model is then
compiled and synthesized into the gate level logic
circuit. VHDL is also being used for writing
simulation model to test logic circuit functionality,
called test bench. The simulation model contains a
number of random input vectors to generate the
expected output during simulation.

TimeQuest Timing Analyzer is used as a timing
analysis tool that validates the timing performance
for digital logic design using industry standard
constraint, analysis, and reporting methodology.
TimeQuest analyses the clock constraint and I/O
delay setting on the logic circuit design, and then
generate the timing report once compilation is
complete. The timing report will show the
maximum frequency that the logic circuit can be
supported on both 1200mV 0oC model and 85oC
model. The slack (the margin which time is required
to achieve at the longest and most critical path) is
also determined. Slack is calculated by using the
equation below.

Slack = Time when data required
 – Time when data arrived (3)

The slack must be in positive value or the data
must arrive before data required time, otherwise the
clock setting does not meet the timing requirement
and violates data setup and hold time. To achieve
positive slack, the clock speed should be reduced to
increase the time period. Clock cycle or time period
can be set using Synopsys Design Constraints
(SDC) file. TimeQuest generated a path summary
report that shows the longest critical path, data
arrival time and data required time.

4.1 24-bit Booth Radix-4 Mantissa
Multiplier
The Booth radix-4 algorithm is modeled using
VHDL code to perform Booth multiplication. This
algorithm is triggered by the positive edge triggered
clock. This multiplication completed in 12 clock
cycles plus 1 clock cycle for result adjustment. The
enable signal (EN) is used to activate the normalizer
once the multiplication is completed. Fig.6 shows
the module of 24-bit Booth radix-4 mantissa
multiplier.

WSEAS TRANSACTIONS on SYSTEMS
Wai-Leong Pang, Kah-Yoong Chan,
Sew-Kin Wong, Choon-Siang Tan

E-ISSN: 2224-2678 683 Issue 12, Volume 12, December 2013

 A series of input data are shown in Table 4 are
used for functional verification of the 24-bit
mantissa multiplier. Table 4 provides all the input
data and the corresponding output generated by
multiplier. As shown in Fig.7, the 24-bit Booth
radix-4 multiplier generated the expected output
shown in Table 4. This shows that 24-bit Booth
radix-4 multiplier is modeled successfully.

Fig.6: 24-bit Booth radix-4 mantissa multiplier

module

Table 4: Test data used for 24-bit Booth radix-4
mantissa multiplier

Inputs (A x B) Expected output
1 x 2 2
3 x 4 12
5 x 6 30
7 x 8 56
9 x 10 90

8785920 x 9437184 82914343649280
7991296 x 7340032 58656368361472

Fig.7: Output waveform of 24-bit Booth radix-4
mantissa multiplier

4.2 Normalizer
The function of normalizer is to extract 48-bit
mantissa that has been generated by 24-bit Booth
radix-4 mantissa multiplier into 23-bit mantissa as
part of the final result. If the MSB (bit-48) is ‘1’,
bit-25 to bit-47 will be selected as final 23-bit
mantissa with rounding to nearest by adding bit-24,
and add carry ‘1’ to exponent. If MSB is ‘0’, then
bit-24 to bit-46 will be selected with rounding to
nearest by adding bit-23 without adding carry to
exponent. All those conditions are written in VHDL
using if-else condition. Fig.8 and Fig.9 show the
RTL view and module of the normalizer.
 Four tests below have been carried out to check
the functionality of normalizer to extract 23-bit out
from 48-bit, and also perform rounding to nearest
algorithm. As a result, the output waveform in
Fig.10 proved normalizer generates all the correct
answers.

Fig.8: RTL view of the Normalizer

Fig.9: Normalizer module

Test 1:

Test 2:

WSEAS TRANSACTIONS on SYSTEMS
Wai-Leong Pang, Kah-Yoong Chan,
Sew-Kin Wong, Choon-Siang Tan

E-ISSN: 2224-2678 684 Issue 12, Volume 12, December 2013

Test 3:

Test 4:

Fig.10: Output waveform of Normalizer

4.3 Exponent Adder
The operation of exponent adder is quite similar to
the full adder except the constant biased value of
127 is included to be subtracted with the sum of
input exponent A, B and the carry bit from
normalizer. The 8-bit output SUM is the final result
for the exponent part of 32-bit floating point
multiplication result.
Fig.11 and Fig.12 show the RTL view and module
of the exponent adder respectively. A set of input
vectors is used in the VHDL test bench shown in
Fig.13 to test the functionality of the exponent
adder. Fig.14 shows the output waveform and the
simulation result indicates that the exponent adder is
working successfully.

Fig.11: RTL view of Exponent Adder

Fig.12: Exponent Adder Module

A <= “00001100”; B <= “00001010”; CARRY <= ‘0’;
wait for 5 ns;
CARRY <= ‘1’; wait for 5 ns;
A <= “01111100”; B <= “01100000”; CARRY <= ‘0’;
wait for 5 ns;
CARRY <= ‘1’; wait for 5 ns;
A <= “10000001”; B <= “10000010”; CARRY <= ‘0’;
wait for 5 ns;
CARRY <= ‘1’; wait for 5 ns;
A <= “10000110”; B <= “10000000”; CARRY <= ‘0’;
wait for 5 ns;
CARRY <= ‘1’; wait for 5 ns;
A <= “10000010”; B <= “01111101”; CARRY <= ‘0’;
wait for 5 ns;
CARRY <= ‘1’; wait for 5 ns;
Fig.13: VHDL test bench of Exponent Adder

Fig.14: Output waveform of Exponent Adder

4.4 Signer
Signer determines the floating point multiplication
results either positive number or negative number.
Same signed numbers are multiplied will lead to a
positive number, different signed numbers lead to a
negative number. The solution is to use a simple
logical operator XOR gate. The XOR gate output
waveform is shown in Fig.15.

Fig.15: Output waveform of Signer or XOR gate

4.5 32-bit Both Radix-4 Multiplier
All four components are combined together to build
32-bit floating point multiplier. Fig.16 showed the
RTL view of 32-bit floating point multiplier.
 The following tests with desired inputs (A and B)
and expected output R have been carried out to
check the functionality of the 32-bit floating point
multiplier. Special cases such as invalid data like
overflow or underflow results produced by
multiplying with infinite value or zero are ignored in
this test.

WSEAS TRANSACTIONS on SYSTEMS
Wai-Leong Pang, Kah-Yoong Chan,
Sew-Kin Wong, Choon-Siang Tan

E-ISSN: 2224-2678 685 Issue 12, Volume 12, December 2013

Fig.16: RTL view – Complete 32-bit floating point
multiplier

Test 1:
134.0625 x -2.25 = -301.640625
A = 134.0625 = 1.00001100001 x 2 7
A = 0 10000110 00001100001000000000000
 = 0x43061000
B = -2.25 = -1.001 x 2 1
B = 1 10000000 00100000000000000000000
 = 0xC0100000
R = A x B = -301.640625
 = -1.00101101101001 x 2 8
R = A x B
 = 1 10000111 00101101101001000000000
 = 0xC396D200

Test 2:
-14.5 x -0.375 = 5.4375
A = -14.5 = -1.1101 x 2 3
A = 1 10000010 11010000000000000000000
 = 0xC1680000
B = -0.375 = -1.1 x 2 -2
B = 1 01111101 10000000000000000000000
 = 0xBEC00000
R = A x B = 5.4375 = 1.010111 x 2 2
R = A x B
 = 0 10000001 01011100000000000000000
 = 0x40AE0000

Test 3:
7.5 x 15.5 = 116.25
A = 7.5 = 1.111 x 2 2
A = 0 10000001 11100000000000000000000
 = 0x40F00000
B = 15.5 = 1.1111 x 2 3
B = 0 10000010 11110000000000000000000
 = 0x41780000
R = A x B = 116.25 = 1.11010001 x 2 6
R = A x B
 = 0 10000101 11010001000000000000000
 = 0x42E88000

As a result, all the outputs RESULT from the
waveform in Fig.17 are matched with outputs R
computed above after 13 clock cycles. This is
shown that the 32-bit floating point multiplier is
modeled successfully.

Fig.17: Output waveform of complete 32-bit
floating point multiplier

4.6 TimeQuest Timing Analyzer
The analysis is targeted on Arria II GX
EP2AGX45CU17I3 device. The minimum CLOCK
period is able to be constrained until 5 ns under
TimeQuest Timing Analyzer. The path summary
report for 32-bit floating point multiplier using this
low power mid-range chip is generated in Table 5.
The critical path is located from pa[27] to
P_OUT[35] inside the Booth radix-4 multiplier. The
data arrival time is 7.276 ns and the data required
time is 7.425 ns. The slack is the difference between
data required time and data arrival time, which is
0.149 ns. The maximum frequency of Arria II GX
EP2AGX45CU17I3 device is 206.14 MHz as shown
in Fig.18.

Table 5: Path summary for 32-bit floating point

multiplier using Arria II GX series
EP2AGX45CU17I3

From Node booth_radix4:U1|pa[27]
To Node booth_radix4:U1|P_OUT[35]
Launch Clock CLOCK
Latch Clock CLOCK
Data Arrival Time 7.276
Data Required Time 7.425
Slack 0.149

WSEAS TRANSACTIONS on SYSTEMS
Wai-Leong Pang, Kah-Yoong Chan,
Sew-Kin Wong, Choon-Siang Tan

E-ISSN: 2224-2678 686 Issue 12, Volume 12, December 2013

Fig.18: TimeQuest timing waveform of 32-bit
floating point multiplier using Arria II GX Series
EP2AGX45CU17I3 device

4.7 Booth Radix-4 and Wallace Tree
Performance Comparison
Some research engineers claimed that Wallace Tree
multiplier performs faster than Booth multiplier.
The Wallace Tree multiplier modeled in [14] is used
as 24-bit Wallace Tree mantissas multiplier. Their
observation may be true but the question is how the
Wallace Tree multiplier improves its performance
compared to Booth multiplier. This experiment will
prove that Booth multiplier still the best option to
build a high speed multiplier rather than Wallace
Tree multiplier.
 The performance of the 32-bit Wallace Tree
floating point multiplier is compared with 32-bit
Booth radix-4 floating point multiplier in this test.
The CLOCK signal is constrained by 5 ns for both
types of multiplication and using Arria II GX
(EP2AGX45CU17I3) FPGA is used to conduct this
performance test. Table 6 summarizes the
performance between Wallace Tree and Booth
Radix-4 multiplier on the Arria II GX device.
 Fig.19 shows the difference between 32-bit
Wallace Tree and Booth radix-4 floating point
multiplier by comparing the number of Adaptive
Look-up Tables (ALUTs) and logic register used in
Arria II GX FPGA chip. As shown in Fig.19, the
resource consumption of Booth radix-4 multiplier is
88.8% less than the Wallace Tree multiplier.
Wallace Tree multiplier consumes more resource
usage on Arria II GX FPGA despite its performance
is only slightly faster than Booth radix-4 multiplier.
The 32-bit floating point multiplier with Wallace

Tree multiplier used extra 88.8% of the total
combinational ALUTs and 94.5% of the total logic
registers to improve only 1% (2.76 MHz) faster than
the Booth radix-4 multiplier. In contrast, the 32-bit
floating point multiplier with Booth radix-4
multiplier consumes less resource usage and still
able to perform with maximum frequency almost as
fast as Wallace Tree multiplier.

Table 6: Performance comparison between the 32-
bit Wallace Tree and Booth radix-4 floating point
multiplier on Arria II GX (EP2AGX45CU17I3)

24-bit
Mantissas
Multiplier

Type

Wallace
Tree

Booth
Radix-4

Difference

Chip Family Arria II GX
EP2AGX45CU17I3

Device

Combinational
ALUTs

2122 /
36100
(6%)

238 /
36100
(< 1%)

88.8%

Logic
Registers

1939 /
36100
(5%)

106/
36100
(< 1%)

94.5%

Total Pins 98 / 176
(56%)

99/ 176
(56%)

Minimum
Clock Period

5 ns

Maximum
Frequency

208.9
MHz

206.14
MHz

1%

Fig.19: Resource usage comparison graph between
32-bit Wallace Tree and Booth radix-4 floating
point multiplier on Arria II GX FPGA device

5 Conclusion
The high speed single precision 32-bit Booth radix-
4 floating point multiplier has been modeled using

WSEAS TRANSACTIONS on SYSTEMS
Wai-Leong Pang, Kah-Yoong Chan,
Sew-Kin Wong, Choon-Siang Tan

E-ISSN: 2224-2678 687 Issue 12, Volume 12, December 2013

VHDL. It consists of 4 modules, i.e. Booth Radix-4
mantissa multiplier, normalizer, exponent adder and
the signer. Booth radix-4 multiplication is one of the
suitable algorithm to be used to design the high
speed 24-bit mantissas multiplier because this
algorithm is much simpler than the complex
Wallace Tree multiplier, thus less gate delay and
able to perform such complex multiplication faster.
In addition, Booth radix-4 performance is doubled
compared to Booth radix-2 that allows high speed
multiplication can be achieved. The 32-bit floating
point Wallace Tree multiplier operates up to 208.9
MHz with same constrained clock period of 5 ns on
Arria II GX FPGA. However, Wallace Tree
multiplier consumes more than 90% extra resources
compare to Booth radix-4 multiplier to gain only 1%
performance improvement. The 32-bit floating point
Booth radix-4 multiplier design is a better option
because it consumes much lesser resource on FPGA
and supports the maximum frequency of 206.14
MHz.

References:
[1] A. Malinowski, Hao Yu, Comparison of

Embedded System Design for Industrial
Applications, IEEE Transactions on Industrial
Informatics, Vol.7, 2011, pp. 244-254.

[2] M. Marius, S. Marius, O. Onisifor, A FPGA
Floating Point Interpolator, Advances in
Intelligent Systems and Computing, Vol.195,
2013, pp. 331-336.

[3] B. Hickmann, A Parallel IEEE P754 Decimal
Floating-Point Multiplier, IEEE 25th
International Conference on Computer Design,
2007, pp. 296 -303.

[4] M. Kumar Jaiswal, Area-Efficient FPGA
Implementation of Quadruple Precision
Floating Point Multiplier, IEEE International
Parallel and Distributed Processing
Symposium Workshops & PhD Forum, 2012,
pp. 376-382.

[5] P. Wu, B.B. Wang, C.H. Ji, Design and
Realization of Short Range Defense Radar
Target Tracking System Based on DSP/FPGA,
WSEAS Transactions on Systems, Vol.10,
2011, pp. 376-386.

[6] L.F. Rahman, Md. Mamun, M.S. Amin, VHDL
Environment for Pipeline Floating Point
Arithmetic Logic Unit Design and Simulation,
Journal of Applied Sciences Research, Vol.8,
2012, pp. 611-619.

[7] X. Yang, J. Zhao, J. Jiang, An improved dc
capacitor voltage detection technology and its
FPGA implementation in the CHB-based

STATCOM, WSEAS Transactions on Systems,
Vol. 9, 2010, pp. 20-30.

[8] Z.Y. Lam, W.L. Pang, C.P. Ooi, S.K. Wong,
K.Y. Chan, VHDL Modelling of Reed
Solomon Decoder, Research Journal of
Applied Sciences, Vol. 4, 2012, pp. 5193-5200.

[9] W.L. Pang, M. B. I. Reaz, M.I. Ibrahim, L.C.
Low, F.M. Yasin, R.A. Rahim, Handwritten
character recognition using fuzzy wavelet: a
VHDL approach, WSEAS Transactions on
Systems, Vol. 5, 2006, pp. 1641-1647.

[10] W. L. Pang, K. W. Chew, F. Choong, E.S.
Teoh, VHDL Modeling of the IEEE802.11b
DCF MAC, 6th WSEAS International
Conference on Instrumentation, Measurement,
Circuits & Systems, 2007, pp. 28-33.

[11] IEEE 754-2008, IEEE Standard for Floating-
Point Arithmetic, IEEE Computer Society, Aug
2008.

[12] C. Wallace, A Suggestion for a Fast Multiplier,
IEEE Transactions on Electronic Computers,
Vol.13, 1964, pp. 14-17.

[13] A. Booth, A Signed Binary Multiplication
Technique, Journal of Mechanics and Applied
Mathematics, Vol. 4, 1951, pp. 236-240.

[14] VHDL Component: Wallace Tree Multiplier
(Generic), Verilog HDL Discussion Forum,
http://www.openhdl.com/vhdl/655-vhdl-
component-wallace-tree-multiplier-
generic.html.

WSEAS TRANSACTIONS on SYSTEMS
Wai-Leong Pang, Kah-Yoong Chan,
Sew-Kin Wong, Choon-Siang Tan

E-ISSN: 2224-2678 688 Issue 12, Volume 12, December 2013

